YOLO v2 YOLO  is a real-time object detection model based on deep learning.
DarkNet19
DarkNet tiny
MobileNet v1
I have created an annotation file of the form
[file_name / img_wigth / img_height / xmin / ymin / xmax / ymax / class]
annotation example 
Then change the image directory and annotation directory in YOLO_parameter.py  and run YOLO_train.py 
It works well and is processed in real time on the GTX-1080.video .Click  on the link below to see three images combined.
YOLOv2 Demo 
os : Ubuntu 16.04.4 LTS
File Description Depthwise_conv .py For MobileNet Losses. py YOLO v2 Loss function Model. py YOLO v2 Model YOLO_eval. py Performance evaluation (mAP and recall) YOLO_parameter. py Parameters used in YOLO v2 YOLO_pred. py Run YOLO v2 on video YOLO_train. py YOLO v2 training YOLO_utils. py Utils used in YOLO v2 
Test with this implementation on released weights VOC2007 test mAP 66.2% mAP 67.6%