资源算法 tf-yolov2

tf-yolov2

2020-02-14 | |  46 |   0 |   0

yolov2 with tensorflow

dataset:

change dataset directory in config.py, folder contain 'images' and 'annotation' subfolder

annotation using pascal/voc xml format

using default yolov2's anchor in 416x416, can be scaled to different size

training:

using numpy's axis (not pascal/voc's axis): (ymin,xmin) = (xmin,ymin) and (ymax,xmax) = (xmax,ymax)

network using VGG16 pretrained model (removed fc layers) from tf-slim with adding 2 conv layers (conv6, logits). vgg_16.ckpt put in model/

python3 train.py --epochs NUM_EPOCHS --batch NUM_IMAGES --lr LEARN_RATE

losses collection (step, bbox, iou, class, total) will be saved in logs/losses_collection.txt

edit adamop to use AdamOptimizer instead of SGD with momentum (default) and pretrained to use VGG16 model from tf-slim instead of initialization from scratch

validation - testing:

demo:

todo:

multiscale images training

fixed out of GPU's memory while training, exhausted with tf.ConfigProto GPU options

evaluate model and visualization with matplotlib

using compute targets (groundtruth and mask) with cython to improve training speed

using postprocess with cython to improve speed


上一篇:Matlab-YOLOv2-LiveTracking

下一篇:Yolov2-tiny-tf-NCS

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...