资源论文A Retrieve-and-Edit Framework for Predicting Structured Outputs

A Retrieve-and-Edit Framework for Predicting Structured Outputs

2020-02-14 | |  108 |   93 |   0

Abstract 

For the task of generating complex outputs such as source code, editing existing outputs can be easier than generating complex outputs from scratch. With this motivation, we propose an approach that first retrieves a training example based on the input (e.g., natural language description) and then edits it to the desired output (e.g., code). Our contribution is a computationally efficient method for learning a retrieval model that embeds the input in a task-dependent way without relying on a hand-crafted metric or incurring the expense of jointly training the retriever with the editor. Our retrieve-and-edit framework can be applied on top of any base model. We show that on a new autocomplete task for GitHub Python code and the Hearthstone cards benchmark, retrieve-and-edit significantly boosts the performance of a vanilla sequence-to-sequence model on both tasks.

上一篇:Symbolic Graph Reasoning Meets Convolutions

下一篇:Multivariate Time Series Imputation with Generative Adversarial Networks

用户评价
全部评价

热门资源

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Supervised Descen...

    Many computer vision problems (e.

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...