资源论文Post: Device Placement with Cross-Entropy Minimization and Proximal Policy Optimization

Post: Device Placement with Cross-Entropy Minimization and Proximal Policy Optimization

2020-02-14 | |  51 |   32 |   0

Abstract 

Training deep neural networks requires an exorbitant amount of computation resources, including a heterogeneous mix of GPU and CPU devices. It is critical to place operations in a neural network on these devices in an optimal way, so that the training process can complete within the shortest amount of time. The state-of-the-art uses reinforcement learning to learn placement skills by repeatedly performing Monte-Carlo experiments. However, due to its equal treatment of placement samples, we argue that there remains ample room for significant improvements. In this paper, we propose a new joint learning algorithm, called Post, that integrates cross-entropy minimization and proximal policy optimization to achieve theoretically guaranteed optimal efficiency. In order to incorporate the cross-entropy method as a sampling technique, we propose to represent placements using discrete probability distributions, which allows us to estimate an optimal probability mass by maximal likelihood estimation, a powerful tool with the best possible efficiency. We have implemented Post in the Google Cloud platform, and our extensive experiments with several popular neural network training benchmarks have demonstrated clear evidence of superior performance: with the same amount of learning time, it leads to placements that have training times up to 63.7% shorter over the state-of-the-art.

上一篇:Why so gloomy? A Bayesian explanation of human pessimism bias in the multi-armed bandit task

下一篇:BRITS: Bidirectional Recurrent Imputation for Time Series

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...