资源论文Leveraging the Exact Likelihood of Deep Latent Variable Models

Leveraging the Exact Likelihood of Deep Latent Variable Models

2020-02-14 | |  42 |   42 |   0

Abstract

 Deep latent variable models (DLVMs) combine the approximation abilities of deep neural networks and the statistical foundations of generative models. Variational methods are commonly used for inference; however, the exact likelihood of these models has been largely overlooked. The purpose of this work is to study the general properties of this quantity and to show how they can be leveraged in practice. We focus on important inferential problems that rely on the likelihood: estimation and missing data imputation. First, we investigate maximum likelihood estimation for DLVMs: in particular, we show that most unconstrained models used for continuous data have an unbounded likelihood function. This problematic behaviour is demonstrated to be a source of mode collapse. We also show how to ensure the existence of maximum likelihood estimates, and draw useful connections with nonparametric mixture models. Finally, we describe an algorithm for missing data imputation using the exact conditional likelihood of a DLVM. On several data sets, our algorithm consistently and significantly outperforms the usual imputation scheme used for DLVMs.

上一篇:Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with β-Divergences

下一篇:Removing the Feature Correlation Effect of Multiplicative Noise

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...