资源论文Discretely Relaxing Continuous Variables for tractable Variational Inference

Discretely Relaxing Continuous Variables for tractable Variational Inference

2020-02-14 | |  53 |   40 |   0

Abstract 

We explore a new research direction in Bayesian variational inference with discrete latent variable priors where we exploit Kronecker matrix algebra for efficient and exact computations of the evidence lower bound (ELBO). The proposed "DIRECT" approach has several advantages over its predecessors; (i) it can exactly compute ELBO gradients (i.e. unbiased, zero-variance gradient estimates), eliminating the need for high-variance stochastic gradient estimators and enabling the use of quasi-Newton optimization methods; (ii) its training complexity is independent of the number of training points, permitting inference on large datasets; and (iii) its posterior samples consist of sparse and low-precision quantized integers which permit fast inference on hardware limited devices. In addition, our DIRECT models can exactly compute statistical moments of the parameterized predictive posterior without relying on Monte Carlo sampling. The DIRECT approach is not practical for all likelihoods, however, we identify a popular model structure which is practical, and demonstrate accurate inference using latent variables discretized as extremely low-precision 4-bit quantized integers. While the ELBO computations considered in the numerical studies require over 102352 log-likelihood evaluations, we train on datasets with over two-million points in just seconds.

上一篇:PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits

下一篇:Connecting Optimization and Regularization Paths

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...