资源论文Maximum Causal Tsallis Entropy Imitation Learning

Maximum Causal Tsallis Entropy Imitation Learning

2020-02-14 | |  57 |   45 |   0

Abstract

 In this paper, we propose a novel maximum causal Tsallis entropy (MCTE) framework for imitation learning which can efficiently learn a sparse multi-modal policy distribution from demonstrations. We provide the full mathematical analysis of the proposed framework. First, the optimal solution of an MCTE problem is shown to be a sparsemax distribution, whose supporting set can be adjusted. The proposed method has advantages over a softmax distribution in that it can exclude unnecessary actions by assigning zero probability. Second, we prove that an MCTE problem is equivalent to robust Bayes estimation in the sense of the Brier score. Third, we propose a maximum causal Tsallis entropy imitation learning (MCTEIL) algorithm with a sparse mixture density network (sparse MDN) by modeling mixture weights using a sparsemax distribution. In particular, we show that the causal Tsallis entropy of an MDN encourages exploration and efficient mixture utilization while Shannon entropy is less effective.

上一篇:Coupled Variational Bayes via Optimization Embedding

下一篇:Stochastic Nonparametric Event-Tensor Decomposition

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...