资源算法nnabla-ggnn

nnabla-ggnn

2020-02-17 | |  55 |   0 |   0

nnabla-ggnn: NNabla Implementation of GG-NN

This repository is a NNabla implementation of Gated Graph Sequence Neural Networks (GG-NN) proposed in the paper Gated Graph Sequence Neural Networks by Y.Li, D.Tarlwo, M.Brockschmdit, and R. Zemel. GG-NNs can use graph-structured data as inputs of neural networks, and gets high accuracy on some bAbI-tasks. This implementation is tested with bAbI 15 and bAbI 19, and gets high accuracy (100% for bAbI15 and 95% for bAbI 19). The official implementation is available in the GitHub repository.

Requirements

  • Python 3.x (tested with Python 3.6.5)

  • NNabla 0.9.9

Run Examples

bAbI 15

$ babi-tasks 15 1000 > train.txt # Notes: babi-tasks can be installed from https://github.com/facebook/bAbI-tasks$ babi-tasks 15 1000 > vaild.txt
$ python ./main.py bAbI15 --train-file train.txt --valid-file valid.txt # --context cudnn

My result: get 100% validation accuracy after 200 iterations (1 epochs).

bAbI 19

$ babi-tasks 19 1000 > train.txt # Notes: babi-tasks can be installed from https://github.com/facebook/bAbI-tasks$ babi-tasks 19 1000 > vaild.txt
$ python ./main.py bAbI10 --train-file train.txt --valid-file valid.txt # --context cudnn

My result: get 95% validation accuracy after 54000 iterations (216 epochs).

TODO

  •  mini-batched training

    • I didn't implement the mini-batch version.

    • I think it is not difficult to implement mini-batched training if the number of vertices in graph is same.

References


上一篇:ProgramAnalysis-GGNN

下一篇:bi-GGNN

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...