资源论文Fast Similarity Search via Optimal Sparse Lifting

Fast Similarity Search via Optimal Sparse Lifting

2020-02-17 | |  53 |   39 |   0

Abstract 

Similarity search is a fundamental problem in computing science with various applications and has attracted significant research attention, especially in largescale search with high dimensions. Motivated by the evidence in biological science, our work develops a novel approach for similarity search. Fundamentally different from existing methods that typically reduce the dimension of the data to lessen the computational complexity and speed up the search, our approach projects the data into an even higher-dimensional space while ensuring the sparsity of the data in the output space, with the objective of further improving precision and speed. Specifically, our approach has two key steps. Firstly, it computes the optimal sparse lifting for given input samples and increases the dimension of the data while approximately preserving their pairwise similarity. Secondly, it seeks the optimal lifting operator that best maps input samples to the optimal sparse lifting. Computationally, both steps are modeled as optimization problems that can be efficiently and effectively solved by the Frank-Wolfe algorithm. Simple as it is, our approach has reported significantly improved results in empirical evaluations, and exhibited its high potentials in solving practical problems.

上一篇:A Deep Bayesian Policy Reuse Approach Against Non-Stationary Agents

下一篇:The Convergence of Sparsified Gradient Methods

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...