资源论文Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities

Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities

2020-02-17 | |  43 |   43 |   0

Abstract 

We study stochastic composite mirror descent, a class of scalable algorithms able to exploit the geometry and composite structure of a problem. We consider both convex and strongly convex objectives with non-smooth loss functions, for each of which we establish high-probability convergence rates optimal up to a logarithmic factor. We apply the derived computational error bounds to study the generalization performance of multi-pass stochastic gradient descent (SGD) in a non-parametric setting. Our high-probability generalization bounds enjoy a logarithmical dependency on the number of passes provided that the step size sequence is square-summable, which improves the existing bounds in expectation with a polynomial dependency and therefore gives a strong justification on the ability of multi-pass SGD to overcome overfitting. Our analysis removes boundedness assumptions on subgradients often imposed in the literature. Numerical results are reported to support our theoretical findings.

上一篇:Temporal Regularization in Markov Decision Process

下一篇:Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...