资源论文Regret Bounds for Online Portfolio Selection with a Cardinality Constraint

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint

2020-02-17 | |  34 |   33 |   0

Abstract

 Online portfolio selection is a sequential decision-making problem in which a learner repetitively selects a portfolio over a set of assets, aiming to maximize long-term return. In this paper, we study the problem with the cardinality constraint that the number of assets in a portfolio is restricted to be at most k, and consider two scenarios: (i) in the full-feedback setting, the learner can observe price relatives (rates of return to cost) for all assets, and (ii) in the bandit-feedback setting, the learner can observe price relatives only for invested assets. We propose efficient algorithms for these scenarios, which achieve sublinear regrets. We also provide regret (statistical) lower bounds for both scenarios which nearly match the upper bounds when k is a constant. In addition, we give a computational lower bound, which implies that no algorithm maintains both computational efficiency, as well as a small regret upper bound.

上一篇:Enhancing the Accuracy and Fairness of Human Decision Making

下一篇:Contextual Stochastic Block Models

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...