资源论文End-to-End Differentiable Physics for Learning and Control

End-to-End Differentiable Physics for Learning and Control

2020-02-17 | |  33 |   31 |   0

Abstract 

We present a differentiable physics engine that can be integrated as a module in deep neural networks for end-to-end learning. As a result, structured physics knowledge can be embedded into larger systems, allowing them, for example, to match observations by performing precise simulations, while achieves high sample efficiency. Specifically, in this paper we demonstrate how to perform backpropagation analytically through a physical simulator defined via a linear complementarity problem. Unlike traditional finite difference methods, such gradients can be computed analytically, which allows for greater flexibility of the engine. Through experiments in diverse domains, we highlight the system’s ability to learn physical parameters from data, efficiently match and simulate observed visual behavior, and readily enable control via gradient-based planning methods. Code for the engine and experiments is included with the paper.1

上一篇:Mirrored Langevin Dynamics

下一篇:Evidential Deep Learning to Quantify Classification Uncertainty

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...