资源论文Occam’s razor is insufficient to infer the preferences of irrational agents

Occam’s razor is insufficient to infer the preferences of irrational agents

2020-02-17 | |  52 |   34 |   0

Abstract

 Inverse reinforcement learning (IRL) attempts to infer human rewards or preferences from observed behavior. Since human planning systematically deviates from rationality, several approaches have been tried to account for specific human shortcomings. However, the general problem of inferring the reward function of an agent of unknown rationality has received little attention. Unlike the well-known ambiguity problems in IRL, this one is practically relevant but cannot be resolved by observing the agent’s policy in enough environments. This paper shows (1) that a No Free Lunch result implies it is impossible to uniquely decompose a policy into a planning algorithm and reward function, and (2) that even with a reasonable simplicity prior/Occam’s razor on the set of decompositions, we cannot distinguish between the true decomposition and others that lead to high regret. To address this, we need simple ‘normative’ assumptions, which cannot be deduced exclusively from observations.

上一篇:Context-Aware Synthesis and Placement of Object Instances

下一篇:Query K-means Clustering and the Double Dixie Cup Problem

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...