资源论文Blind Deconvolutional Phase Retrieval via Convex Programming

Blind Deconvolutional Phase Retrieval via Convex Programming

2020-02-17 | |  53 |   37 |   0

Abstract 

We consider the task of recovering two real or complex m-vectors from phaseless Fourier measurements of their circular convolution. Our method is a novel convex relaxation that is based on a lifted matrix recovery formulation that allows a nontrivial convex relaxation of the bilinear measurements from convolution. We prove that if the two signals belong to known random subspaces of dimensions k and n, then they can be recovered up to the inherent scaling ambiguity with image.png phaseless measurements. Our method provides the first theoretical recovery guarantee for this problem by a computationally efficient algorithm and does not require a solution estimate to be computed for initialization. Our proof is based Rademacher complexity estimates. Additionally, we provide an ADMM implementation of the method and provide numerical experiments that verify the theory.

上一篇:Banach Wasserstein GAN

下一篇:GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...