资源论文Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization

Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization

2020-02-17 | |  63 |   40 |   0

Abstract 

Symmetric nonnegative matrix factorization (NMF)—a special but important class of the general NMF—is demonstrated to be useful for data analysis and in particular for various clustering tasks. Unfortunately, designing fast algorithms for Symmetric NMF is not as easy as for the nonsymmetric counterpart, the later admitting the splitting property that allows efficient alternating-type algorithms. To overcome this issue, we transfer the symmetric NMF to a nonsymmetric one, then we can adopt the idea from the state-of-the-art algorithms for nonsymmetric NMF to design fast algorithms solving symmetric NMF. We rigorously establish that solving nonsymmetric reformulation returns a solution for symmetric NMF and then apply fast alternating based algorithms for the corresponding reformulated problem. Furthermore, we show these fast algorithms admit strong convergence guarantee in the sense that the generated sequence is convergent at least at a sublinear rate and it converges globally to a critical point of the symmetric NMF. We conduct experiments on both synthetic data and image clustering to support our result.

上一篇:Model-Agnostic Private Learning

下一篇:Kalman Normalization: Normalizing Internal Representations Across Network Layers

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...