资源论文Regularization Learning Networks: Deep Learning for Tabular Datasets

Regularization Learning Networks: Deep Learning for Tabular Datasets

2020-02-17 | |  47 |   41 |   0

Abstract 

Despite their impressive performance, Deep Neural Networks (DNNs) typically underperform Gradient Boosting Trees (GBTs) on many tabular-dataset learning tasks. We propose that applying a different regularization coefficient to each weight might boost the performance of DNNs by allowing them to make more use of the more relevant inputs. However, this will lead to an intractable number of hyperparameters. Here, we introduce Regularization Learning Networks (RLNs), which overcome this challenge by introducing an efficient hyperparameter tuning scheme which minimizes a new Counterfactual Loss. Our results show that RLNs significantly improve DNNs on tabular datasets, and achieve comparable results to GBTs, with the best performance achieved with an ensemble that combines GBTs and RLNs. RLNs produce extremely sparse networks, eliminating up to 99.8% of the network edges and 82% of the input features, thus providing more interpretable models and reveal the importance that the network assigns to different inputs. RLNs could efficiently learn a single network in datasets that comprise both tabular and unstructured data, such as in the setting of medical imaging accompanied by electronic health records. An open source implementation of RLN can be found at https://github.com/irashavitt/regularization_ learning_networks.

上一篇:TETRIS: TilE-matching the TRemendous Irregular Sparsity

下一篇:When do random forests fail?

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...