资源论文Neural Networks Trained to Solve Differential Equations Learn General Representations

Neural Networks Trained to Solve Differential Equations Learn General Representations

2020-02-18 | |  34 |   31 |   0

Abstract 

We introduce a technique based on the singular vector canonical correlation analysis (SVCCA) for measuring the generality of neural network layers across a continuously-parametrized set of tasks. We illustrate this method by studying generality in neural networks trained to solve parametrized boundary value problems based on the Poisson partial differential equation. We find that the first hidden layers are general, and that they learn generalized coordinates over the input domain. Deeper layers are successively more specific. Next, we validate our method against an existing technique that measures layer generality using transfer learning experiments. We find excellent agreement between the two methods, and note that our method is much faster, particularly for continuously-parametrized problems. Finally, we also apply our method to networks trained on MNIST, and show it is consistent with, and complimentary to, another study of intrinsic dimensionality.

上一篇:Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling

下一篇:Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...