资源论文Modern Neural Networks Generalize on Small Data Sets

Modern Neural Networks Generalize on Small Data Sets

2020-02-18 | |  54 |   45 |   0

Abstract 

In this paper, we use a linear program to empirically decompose fitted neural networks into ensembles of low-bias sub-networks. We show that these sub-networks are relatively uncorrelated which leads to an internal regularization process, very much like a random forest, which can explain why a neural network is surprisingly resistant to overfitting. We then demonstrate this in practice by applying large neural networks, with hundreds of parameters per training observation, to a collection of 116 real-world data sets from the UCI Machine Learning Repository. This collection of data sets contains a much smaller number of training examples than the types of image classification tasks generally studied in the deep learning literature, as well as non-trivial label noise. We show that even in this setting deep neural nets are capable of achieving superior classification accuracy without overfitting.

上一篇:Deep Neural Nets with Interpolating Function as Output Activation

下一篇:Heterogeneous Bitwidth Binarization in Convolutional Neural Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...