资源论文Minimax Estimation of Neural Net Distance

Minimax Estimation of Neural Net Distance

2020-02-18 | |  33 |   30 |   0

Abstract 

An important class of distance metrics proposed for training generative adversarial networks (GANs) is the integral probability metric (IPM), in which the neural net distance captures the practical GAN training via two neural networks. This paper investigates the minimax estimation problem of the neural net distance based on samples drawn from the distributions. We develop the first known minimax lower bound on the estimation error of the neural net distance, and an upper bound tighter than an existing bound on the estimator error for the empirical neural net distance. Our lower and upper bounds match not only in the order of the sample size but also in terms of the norm of the parameter matrices of neural networks, which justifies the empirical neural net distance as a good approximation of the true neural net distance for training GANs in practice.

上一篇:Heterogeneous Bitwidth Binarization in Convolutional Neural Networks

下一篇:Hyperbolic Neural Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...