资源论文Toddler-Inspired Visual Object Learning

Toddler-Inspired Visual Object Learning

2020-02-18 | |  37 |   31 |   0

Abstract

 Real-world learning systems have practical limitations on the quality and quantity of the training datasets that they can collect and consider. How should a system go about choosing a subset of the possible training examples that still allows for learning accurate, generalizable models? To help address this question, we draw inspiration from a highly efficient practical learning system: the human child. Using head-mounted cameras, eye gaze trackers, and a model of foveated vision, we collected first-person (egocentric) images that represent a highly accurate approximation of the "training data" that toddlers’ visual systems collect in everyday, naturalistic learning contexts. We used state-of-the-art computer vision learning models (convolutional neural networks) to help characterize the structure of these data, and found that child data produce significantly better object models than egocentric data experienced by adults in exactly the same environment. By using the CNNs as a modeling tool to investigate the properties of the child data that may enable this rapid learning, we found that child data exhibit a unique combination of quality and diversity, with not only many similar large, high-quality object views but also a greater number and diversity of rare views. This novel methodology of analyzing the visual "training data" used by children may not only reveal insights to improve machine learning, but also may suggest new experimental tools to better understand infant learning in developmental psychology.

上一篇:Geometry-Aware Recurrent Neural Networks for Active Visual Recognition

下一篇:Beyond Grids: Learning Graph Representations for Visual Recognition

用户评价
全部评价

热门资源

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...