资源论文Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms

Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms

2020-02-18 | |  60 |   51 |   0

Abstract

 Recent methods for learning a linear subspace from data corrupted by outliers are based on convex image.png1 and nuclear norm optimization and require the dimension of the subspace and the number of outliers to be sufficiently small [27]. In sharp contrast, the recently proposed Dual Principal Component Pursuit (DPCP) method [22] can provably handle subspaces of high dimension by solving a non-convex image.png1 optimization problem on the sphere. However, its geometric analysis is based on quantities that are difficult to interpret and are not amenable to statistical analysis. In this paper we provide a refined geometric analysis and a new statistical analysis that show that DPCP can tolerate as many outliers as the square of the number of inliers, thus improving upon other provably correct robust PCA methods. We also propose a scalable Projected Sub-Gradient Method (DPCP-PSGM) for solving the DPCP problem and show that it achieves linear convergence even though the underlying optimization problem is non-convex and non-smooth. Experiments on road plane detection from 3D point cloud data demonstrate that DPCP-PSGM can be more efficient than the traditional RANSAC algorithm, which is one of the most popular methods for such computer vision applications.

上一篇:Learning Conditioned Graph Structures for Interpretable Visual Question Answering

下一篇:Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...