资源论文Deep State Space Models for Unconditional Word Generation

Deep State Space Models for Unconditional Word Generation

2020-02-18 | |  52 |   43 |   0

Abstract

 Autoregressive feedback is considered a necessity for successful unconditional text generation using stochastic sequence models. However, such feedback is known to introduce systematic biases into the training process and it obscures a principle of generation: committing to global information and forgetting local nuances. We show that a non-autoregressive deep state space model with a clear separation of global and local uncertainty can be built from only two ingredients: An independent noise source and a deterministic transition function. Recent advances on flowbased variational inference can be used to train an evidence lower-bound without resorting to annealing, auxiliary losses or similar measures. The result is a highly interpretable generative model on par with comparable auto-regressive models on the task of word generation.

上一篇:Generalisation of structural knowledge in the hippocampal-entorhinal system

下一篇:FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...