资源论文KDGAN: Knowledge Distillation with Generative Adversarial Networks

KDGAN: Knowledge Distillation with Generative Adversarial Networks

2020-02-18 | |  92 |   50 |   0

Abstract

 Knowledge distillation (KD) aims to train a lightweight classifier suitable to provide accurate inference with constrained resources in multi-label learning. Instead of directly consuming feature-label pairs, the classifier is trained by a teacher, i.e., a high-capacity model whose training may be resource-hungry. The accuracy of the classifier trained this way is usually suboptimal because it is difficult to learn the true data distribution from the teacher. An alternative method is to adversarially train the classifier against a discriminator in a two-player game akin to generative adversarial networks (GAN), which can ensure the classifier to learn the true data distribution at the equilibrium of this game. However, it may take excessively long time for such a two-player game to reach equilibrium due to high-variance gradient updates. To address these limitations, we propose a three-player game named KDGAN consisting of a classifier, a teacher, and a discriminator. The classifier and the teacher learn from each other via distillation losses and are adversarially trained against the discriminator via adversarial losses. By simultaneously optimizing the distillation and adversarial losses, the classifier will learn the true data distribution at the equilibrium. We approximate the discrete distribution learned by the classifier (or the teacher) with a concrete distribution. From the concrete distribution, we generate continuous samples to obtain low-variance gradient updates, which speed up the training. Extensive experiments using real datasets confirm the superiority of KDGAN in both accuracy and training speed.

上一篇:FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification

下一篇:Overcoming Language Priors in Visual Question Answering with Adversarial Regularization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...