资源论文Modelling the Dynamics of Multiagent Q-Learning in Repeated Symmetric Games: a Mean Field Theoretic Approach

Modelling the Dynamics of Multiagent Q-Learning in Repeated Symmetric Games: a Mean Field Theoretic Approach

2020-02-19 | |  60 |   49 |   0

Abstract

Modelling the dynamics of multi-agent learning has long been an important research topic, but all of the previous works focus on 2-agent settings and mostly use evolutionary game theoretic approaches. In this paper, we study an n-agent setting with n tends to infinity, such that agents learn their policies concurrently over repeated symmetric bimatrix games with some other agents. Using the mean field theory, we approximate the effects of other agents on a single agent by an averaged effect. A Fokker-Planck equation that describes the evolution of the probability distribution of Q-values in the agent population is derived. To the best of our knowledge, this is the first time to show the Q-learning dynamics under an n-agent setting can be described by a system of only three equations. We validate our model through comparisons with agent-based simulations on typical symmetric bimatrix games and different initial settings of Q-values.

上一篇:On the number of variables to use in principal component regression

下一篇:In-Place Zero-Space Memory Protection for CNN

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...