资源论文Self-Supervised Deep Learning on Point Clouds by Reconstructing Space

Self-Supervised Deep Learning on Point Clouds by Reconstructing Space

2020-02-19 | |  53 |   37 |   0

Abstract

Point clouds provide a flexible and natural representation usable in countless applications such as robotics or self-driving cars. Recently, deep neural networks operating on raw point cloud data have shown promising results on supervised learning tasks such as object classification and semantic segmentation. While massive point cloud datasets can be captured using modern scanning technology, manually labelling such large 3D point clouds for supervised learning tasks is a cumbersome process. This necessitates methods that can learn from unlabelled data to significantly reduce the number of annotated samples needed in supervised learning. We propose a self-supervised learning task for deep learning on raw point cloud data in which a neural network is trained to reconstruct point clouds whose parts have been randomly rearranged. While solving this task, representations that capture semantic properties of the point cloud are learned. Our method is agnostic of network architecture and outperforms current unsupervised learning approaches in downstream object classification tasks. We show experimentally, that pre-training with our method before supervised training improves the performance of state-of-the-art models and significantly improves sample efficiency.

上一篇:Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions

下一篇:A unified theory for the origin of grid cells through the lens of pattern formation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...