资源论文Exact Gaussian Processes on a Million Data Points

Exact Gaussian Processes on a Million Data Points

2020-02-19 | |  39 |   29 |   0

Abstract

Gaussian processes (GPs) are flexible non-parametric models, with a capacity that grows with the available data. However, computational constraints with standard inference procedures have limited exact GPs to problems with fewer than about ten thousand training points, necessitating approximations for larger datasets. In this paper, we develop a scalable approach for exact GPs that leverages multi-GPU parallelization and methods like linear conjugate gradients, accessing the kernel matrix only through matrix multiplication. By partitioning and distributing kernel matrix multiplies, we demonstrate that an exact GP can be trained on over a million points, a task previously thought to be impossible with current computing hardware. Moreover, our approach is generally applicable, without constraints to grid data or specific kernel classes. Enabled by this scalability, we perform the first-ever comparison of exact GPs against scalable GP approximations on datasets with 104 ?106 data points, showing dramatic performance improvements.

上一篇:Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs

下一篇:Band-Limited Gaussian Processes: The Sinc Kernel

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...