资源论文Enhancing the Locality and Breaking the MemoryBottleneck of Transformer on Time Series Forecasting

Enhancing the Locality and Breaking the MemoryBottleneck of Transformer on Time Series Forecasting

2020-02-19 | |  79 |   91 |   0

Abstract

Time series forecasting is an important problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. In this paper, we propose to tackle such forecasting problem with Transformer [1]. Although impressed by its performance in our preliminary study, we found its two major weaknesses: (1) locality-agnostics: the point-wise dotproduct self-attention in canonical Transformer architecture is insensitive to local context, which can make the model prone to anomalies in time series; (2) memory bottleneck: space complexity of canonical Transformer grows quadratically with sequence length L, making directly modeling long time series infeasible. In order to solve these two issues, we first propose convolutional self-attention by producing queries and keys with causal convolution so that local context can be better incorporated into attention mechanism. Then, we propose LogSparse Transformer with only 图片.png memory cost, improving forecasting accuracy for time series with fine granularity and strong long-term dependencies under constrained memory budget. Our experiments on both synthetic data and realworld datasets show that it compares favorably to the state-of-the-art.

上一篇:Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets

下一篇:Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...