资源论文Reconciling meta-learning and continual learning with online mixtures of tasks

Reconciling meta-learning and continual learning with online mixtures of tasks

2020-02-20 | |  131 |   49 |   0

Abstract

Learning-to-learn or meta-learning leverages data-driven inductive bias to increase the efficiency of learning on a novel task. This approach encounters difficulty when transfer is not advantageous, for instance, when tasks are considerably dissimilar or change over time. We use the connection between gradient-based meta-learning and hierarchical Bayes to propose a Dirichlet process mixture of hierarchical Bayesian models over the parameters of an arbitrary parametric model such as a neural network. In contrast to consolidating inductive biases into a single set of hyperparameters, our approach of task-dependent hyperparameter selection better handles latent distribution shift, as demonstrated on a set of evolving, image-based, few-shot learning benchmarks.

上一篇:Online Forecasting of Total-Variation-bounded Sequences

下一篇:Fast Parallel Algorithms for Statistical Subset Selection Problems

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...