资源论文Acceleration via Symplectic Discretization of High-Resolution Differential Equations

Acceleration via Symplectic Discretization of High-Resolution Differential Equations

2020-02-20 | |  63 |   39 |   0

Abstract

We study first-order optimization algorithms obtained by discretizing ordinary differential equations (ODEs) corresponding to Nesterov’s accelerated gradient methods (NAGs) and Polyak’s heavy-ball method. We consider three discretization schemes: symplectic Euler (S), explicit Euler (E) and implicit Euler (I) schemes. We show that the optimization algorithm generated by applying the symplectic scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves the accelerated rate for minimizing both strongly convex functions and convex functions. On the other hand, the resulting algorithm either fails to achieve acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is explicit.

上一篇:KNG: The K-Norm Gradient Mechanism

下一篇:Practical Deep Learning with Bayesian Principles

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...