资源论文Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes

Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes

2020-02-20 | |  72 |   39 |   0

Abstract

Dynamic functional connectivity, as measured by the time-varying covariance of neurological signals, is believed to play an important role in many aspects of cognition. While many methods have been proposed, reliably establishing the presence and characteristics of brain connectivity is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a latent factor Gaussian process model which addresses these challenges by learning a parsimonious representation of connectivity dynamics. The proposed model naturally allows for inference and visualization of connectivity dynamics. As an illustration of the scientific utility of the model, application to a data set of rat local field potential activity recorded during a complex non-spatial memory task provides evidence of stimuli differentiation.

上一篇:Policy Evaluation with Latent Confounders via Optimal Balance

下一篇:Privacy-Preserving Classification of Personal Text Messages with Secure Multi-Party Computation: An Application to Hate-Speech Detection

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...