资源论文Efficiently avoiding saddle points with zero order methods: No gradients required

Efficiently avoiding saddle points with zero order methods: No gradients required

2020-02-20 | |  81 |   45 |   0

Abstract

We consider the case of derivative-free algorithms for non-convex optimization, also known as zero order algorithms, that use only function evaluations rather than gradients. For a wide variety of gradient approximators based on finite differences, we establish asymptotic convergence to second order stationary points using a carefully tailored application of the Stable Manifold Theorem. Regarding efficiency, we introduce a noisy zero-order method that converges to second order stationary points, i.e avoids saddle points. Our algorithm uses only 图片.png approximate gradient calculations and, thus, it matches the converge rate guarantees of their exact gradient counterparts up to constants. In contrast to previous work, our convergence rate analysis avoids imposing additional dimension dependent slowdowns in the number of iterations required for non-convex zero order optimization.

上一篇:Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection

下一篇:A Kernel Loss for Solving the Bellman Equation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...