资源论文End to end learning and optimization on graphs

End to end learning and optimization on graphs

2020-02-20 | |  68 |   43 |   0

Abstract

Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. Standard approaches treat learning and optimization entirely separately, while recent machine learning work aims to predict the optimal solution directly from the inputs. Here, we propose an alternative decision-focused learning approach that integrates a differentiable proxy for common graph optimization problems as a layer in learned systems. The main idea is to learn a representation that maps the original optimization problem onto a simpler proxy problem that can be efficiently differentiated through. Experimental results show that our C LUSTER N ET system outperforms both pure end-to-end approaches (that directly predict the optimal solution) and standard approaches that entirely separate learning and optimization. Code for our system is available at https://github.com/bwilder0/clusternet.

上一篇:TAB-VCR: Tags and Attributes based VCR Baselines

下一篇:First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...