资源论文Backprop with Approximate Activations for Memory-efficient Network Training

Backprop with Approximate Activations for Memory-efficient Network Training

2020-02-20 | |  58 |   41 |   0

Abstract

Training convolutional neural network models is memory intensive since backpropagation requires storing activations of all intermediate layers. This presents a practical concern when seeking to deploy very deep architectures in production, especially when models need to be frequently re-trained on updated datasets. In this paper, we propose a new implementation for back-propagation that significantly reduces memory usage, by enabling the use of approximations with negligible computational cost and minimal effect on training performance. The algorithm reuses common buffers to temporarily store full activations and compute the forward pass exactly. It also stores approximate per-layer copies of activations, at significant memory savings, that are used in the backward pass. Compared to simply approximating activations within standard back-propagation, our method limits accumulation of errors across layers. This allows the use of much lower-precision approximations without affecting training accuracy. Experiments on CIFAR-10, CIFAR-100, and ImageNet show that our method yields performance close to exact training, while storing activations compactly with as low as 4-bit precision.

上一篇:Coresets for Archetypal Analysis

下一篇:Solving Interpretable Kernel Dimension Reduction

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...