资源论文Shallow RNNs: A Method for Accurate Time-series Classification on Tiny Devices

Shallow RNNs: A Method for Accurate Time-series Classification on Tiny Devices

2020-02-20 | |  59 |   41 |   0

Abstract

Recurrent Neural Networks (RNNs) capture long dependencies and context, and hence are the key component of typical sequential data based tasks. However, the sequential nature of RNNs dictates a large inference cost for long sequences even if the hardware supports parallelization. To induce long-term dependencies, and yet admit parallelization, we introduce novel shallow RNNs. In this architecture, the first layer splits the input sequence and runs several independent RNNs. The second layer consumes the output of the first layer using a second RNN thus capturing long dependencies. We provide theoretical justification for our architecture under weak assumptions that we verify on real-world benchmarks. Furthermore, we show that for time-series classification, our technique leads to substantially improved inference time over standard RNNs without compromising accuracy. For example, we can deploy audio-keyword classification on tiny Cortex M4 devices (100MHz processor, 256KB RAM, no DSP available) which was not possible using standard RNN models. Similarly, using ShaRNN in the popular Listen-Attend-Spell (LAS) architecture for phoneme classification [4], we can reduce the lag in phoneme classification by 10-12x while maintaining state-of-the-art accuracy.

上一篇:Solving Interpretable Kernel Dimension Reduction

下一篇:Learning Nonsymmetric Determinantal Point Processes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...