资源论文Learning Stable Deep Dynamics Models

Learning Stable Deep Dynamics Models

2020-02-20 | |  46 |   38 |   0

Abstract

Deep networks are commonly used to model dynamical systems, predicting how the state of a system will evolve over time (either autonomously or in response to control inputs). Despite the predictive power of these systems, it has been difficult to make formal claims about the basic properties of the learned systems. In this paper, we propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space. The approach works by jointly learning a dynamics model and Lyapunov function that guarantees non-expansiveness of the dynamics under the learned Lyapunov function. We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics, such as video textures, in a fully end-to-end fashion.

上一篇:Learning Erdo?s-Rényi Random Graphs via Edge Detecting Queries

下一篇:Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...