资源论文Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback

Communication-Efficient Distributed Blockwise Momentum SGD with Error-Feedback

2020-02-20 | |  53 |   43 |   0

Abstract

Communication overhead is a major bottleneck hampering the scalability of distributed machine learning systems. Recently, there has been a surge of interest in using gradient compression to improve the communication efficiency of distributed neural network training. Using 1-bit quantization, signSGD with majority vote achieves a 32x reduction on communication cost. However, its convergence is based on unrealistic assumptions and can diverge in practice. In this paper, we propose a general distributed compressed SGD with Nesterov’s momentum. We consider two-way compression, which compresses the gradients both to and from workers. Convergence analysis on nonconvex problems for general gradient compressors is provided. By partitioning the gradient into blocks, a blockwise compressor is introduced such that each gradient block is compressed and transmitted in 1-bit format with a scaling factor, leading to a nearly 32x reduction on communication. Experimental results show that the proposed method converges as fast as full-precision distributed momentum SGD and achieves the same testing accuracy. In particular, on distributed ResNet training with 7 workers on the ImageNet, the proposed algorithm achieves the same testing accuracy as momentum SGD using full-precision gradients, but with 46% less wall clock time.

上一篇:Regularized Weighted Low Rank Approximation

下一篇:A New Defense Against Adversarial Images: Turning a Weakness into a Strength

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...