资源论文Fast and Accurate Least-Mean-Squares Solvers

Fast and Accurate Least-Mean-Squares Solvers

2020-02-20 | |  64 |   36 |   0

Abstract

Least-mean squares (LMS) solvers such as Linear / Ridge / Lasso-Regression, SVD and Elastic-Net not only solve fundamental machine learning problems, but are also the building blocks in a variety of other methods, such as decision trees and matrix factorizations. We suggest an algorithm that gets a finite set of n d-dimensional real vectors and returns a weighted subset of d + 1 vectors whose sum is exactly the same. The proof in Caratheodory’s Theorem (1907) computes such a subset in 图片.png time and thus not used in practice. Our algorithm computes this subset in O(nd) time, using O(log n) calls to Caratheodory’s construction on small but "smart" subsets. This is based on a novel paradigm of fusion between different data summarization techniques, known as sketches and coresets. As an example application, we show how it can be used to boost the performance of existing LMS solvers, such as those in scikit-learn library, up to x100. Generalization for streaming and distributed (big) data is trivial. Extensive experimental results and complete open source code are also provided.

上一篇:Learning Deterministic Weighted Automata with Queries and Counterexamples

下一篇:Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...