资源论文NAOMI: Non-Autoregressive Multiresolution Sequence Imputation

NAOMI: Non-Autoregressive Multiresolution Sequence Imputation

2020-02-20 | |  122 |   85 |   0

Abstract

Missing value imputation is a fundamental problem in spatiotemporal modeling, from motion tracking to the dynamics of physical systems. Deep autoregressive models suffer from error propagation which becomes catastrophic for imputing long-range sequences. In this paper, we take a non-autoregressive approach and propose a novel deep generative model: Non-AutOregressive Multiresolution Imputation (NAOMI) to impute long-range sequences given arbitrary missing patterns. NAOMI exploits the multiresolution structure of spatiotemporal data and decodes recursively from coarse to fine-grained resolutions using a divide-andconquer strategy. We further enhance our model with adversarial training. When evaluated extensively on benchmark datasets from systems of both deterministic and stochastic dynamics. In our experiments, NAOMI demonstrates significant improvement in imputation accuracy (reducing average error by 60% compared to autoregressive counterparts) and generalization for long-range sequences.

上一篇:Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs

下一篇:Multiclass Learning from Contradictions

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...