资源论文Flexible Modeling of Diversity with Strongly Log-Concave Distributions

Flexible Modeling of Diversity with Strongly Log-Concave Distributions

2020-02-21 | |  44 |   53 |   0

Abstract

Strongly log-concave (SLC) distributions are a rich class of discrete probability distributions over subsets of some ground set. They are strictly more general than strongly Rayleigh (SR) distributions such as the well-known determinantal point process. While SR distributions offer elegant models of diversity, they lack an easy control over how they express diversity. We propose SLC as the right extension of SR that enables easier, more intuitive control over diversity, illustrating this via examples of practical importance. We develop two fundamental tools needed to apply SLC distributions to learning and inference: sampling and mode finding. For sampling we develop an MCMC sampler and give theoretical mixing time bounds. For mode finding, we establish a weak log-submodularity property for SLC functions and derive optimization guarantees for a distorted greedy algorithm.

上一篇:Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs

下一篇:Pseudo-Extended Markov Chain Monte Carlo

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...