资源论文Singleshot : a scalable Tucker tensor decomposition

Singleshot : a scalable Tucker tensor decomposition

2020-02-21 | |  65 |   40 |   0

Abstract

This paper introduces a new approach for the scalable Tucker decomposition problem. Given a tensor X , the algorithm proposed, named Singleshot, allows to perform the inference task by processing one subtensor drawn from X at a time. The key principle of our approach is based on the recursive computations of the gradient and on cyclic update of the latent factors involving only one single step of gradient descent. We further improve the computational efficiency of Singleshot by proposing an inexact gradient version named Singleshotinexact. The two algorithms are backed with theoretical guarantees of convergence and convergence rates under mild conditions. The scalabilty of the proposed approaches, which can be easily extended to handle some common constraints encountered in tensor decomposition (e.g non-negativity), is proven via numerical experiments on both synthetic and real data sets.

上一篇:Bayesian Learning of Sum-Product Networks

下一篇:Continuous-time Models for Stochastic Optimization Algorithms

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...