资源论文Space and Time Efficient Kernel Density Estimation in High Dimensions

Space and Time Efficient Kernel Density Estimation in High Dimensions

2020-02-21 | |  49 |   35 |   0

Abstract

Recently, Charikar and Siminelakis (2017) presented a framework for kernel density estimation in provably sublinear query time, for kernels that possess a certain hashing-based property. However, their data structure requires a significantly increased super-linear storage space, as well as super-linear preprocessing time. These limitations inhibit the practical applicability of their approach on large datasets. In this work, we present an improvement to their framework that retains the same query time, while requiring only linear space and linear preprocessing time. We instantiate our framework with the Laplacian and Exponential kernels, two popular kernels which possess the aforementioned property. Our experiments on various datasets verify that our approach attains accuracy and query time similar to Charikar and Siminelakis (2017), with significantly improved space and preprocessing time.

上一篇:Differentially Private Markov Chain Monte Carlo

下一篇:Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...