资源论文Defending Neural Backdoors via Generative Distribution Modeling

Defending Neural Backdoors via Generative Distribution Modeling

2020-02-21 | |  63 |   44 |   0

Abstract

Neural backdoor attack is emerging as a severe security threat to deep learning, while the capability of existing defense methods is limited, especially for complex backdoor triggers. In the work, we explore the space formed by the pixel values of all possible backdoor triggers. An original trigger used by an attacker to build the backdoored model represents only a point in the space. It then will be generalized into a distribution of valid triggers, all of which can influence the backdoored model. Thus, previous methods that model only one point of the trigger distribution is not sufficient. Getting the entire trigger distribution, e.g., via generative modeling, is a key of effective defense. However, existing generative modeling techniques for image generation are not applicable to the backdoor scenario as the trigger distribution is completely unknown. In this work, we propose max-entropy staircase approximator (MESA) for high-dimensional sampling-free generative modeling and use it to recover the trigger distribution. We also develop a defense technique to remove the triggers from the backdoored model. Our experiments on Cifar10/100 dataset demonstrate the effectiveness of MESA in modeling the trigger distribution and the robustness of the proposed defense method.

上一篇:Improved Regret Bounds for Bandit Combinatorial Optimization*

下一篇:Optimal Stochastic and Online Learning with Individual Iterates

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...