资源论文MaxGap Bandit: Adaptive Algorithms for Approximate Ranking

MaxGap Bandit: Adaptive Algorithms for Approximate Ranking

2020-02-21 | |  54 |   31 |   0

Abstract

This paper studies the problem of adaptively sampling from K distributions (arms) in order to identify the largest gap between any two adjacent means. We call this the MaxGap-bandit problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The key novelty of the MaxGap bandit problem is that it aims to adaptively determine the natural partitioning of the distributions into a subset with larger means and a subset with smaller means, where the split is determined by the largest gap rather than a pre-specified rank or threshold. Estimating an arm’s gap requires sampling its neighboring arms in addition to itself, and this dependence results in a novel hardness parameter that characterizes the sample complexity of the problem. We propose elimination and UCB-style algorithms and show that they are minimax optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.

上一篇:Stacked Capsule Autoencoders

下一篇:Implicit Posterior Variational Inference for Deep Gaussian Processes

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...