资源论文One-Shot Object Detection with Co-Attention and Co-Excitation

One-Shot Object Detection with Co-Attention and Co-Excitation

2020-02-21 | |  38 |   30 |   0

Abstract

This paper aims to tackle the challenging problem of one-shot object detection. Given a query image patch whose class label is not included in the training data, the goal of the task is to detect all instances of the same class in a target image. To this end, we develop a novel co-attention and co-excitation (CoAE) framework that makes contributions in three key technical aspects. First, we propose to use the nonlocal operation to explore the co-attention embodied in each query-target pair and yield region proposals accounting for the one-shot situation. Second, we formulate a squeeze-and-co-excitation scheme that can adaptively emphasize correlated feature channels to help uncover relevant proposals and eventually the target objects. Third, we design a margin-based ranking loss for implicitly learning a metric to predict the similarity of a region proposal to the underlying query, no matter its class label is seen or unseen in training. The resulting model is therefore a two-stage detector that yields a strong baseline on both VOC and MS-COCO under one-shot setting of detecting objects from both seen and never-seen classes. Codes are available at https://github.com/timy90022/One-Shot-Object-Detection.

上一篇:Normalization Helps Training of Quantized LSTM

下一篇:Greedy Sampling for Approximate Clustering in the Presence of Outliers

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...