资源论文Learning Hierarchical Priors in VAEs

Learning Hierarchical Priors in VAEs

2020-02-23 | |  83 |   70 |   0

Abstract

We propose to learn a hierarchical prior in the context of variational autoencoders to avoid the over-regularisation resulting from a standard normal prior distribution. To incentivise an informative latent representation of the data, we formulate the learning problem as a constrained optimisation problem by extending the Taming VAEs framework to two-level hierarchical models. We introduce a graph-based interpolation method, which shows that the topology of the learned latent representation corresponds to the topology of the data manifold—and present several examples, where desired properties of latent representation such as smoothness and simple explanatory factors are learned by the prior.

上一篇:Massively Scalable Sinkhorn Distances via the Nyström Method

下一篇:Region-specific Diffeomorphic Metric Mapping

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • Shape-based Autom...

    We present an algorithm for automatic detection...