资源论文Trivializations for Gradient-Based Optimization on Manifolds

Trivializations for Gradient-Based Optimization on Manifolds

2020-02-23 | |  44 |   36 |   0

Abstract

We introduce a framework to study the transformation of problems with manifold constraints into unconstrained problems through parametrizations in terms of a Euclidean space. We call these parametrizations trivializations. We prove conditions under which a trivialization is sound in the context of gradient-based optimization and we show how two large families of trivializations have overall favorable properties, but also suffer from a performance issue. We then introduce dynamic trivializations, which solve this problem, and we show how these form a family of optimization methods that lie between trivializations and Riemannian gradient descent, and combine the benefits of both of them. We then show how to implement these two families of trivializations in practice for different matrix manifolds. To this end, we prove a formula for the gradient of the exponential of matrices, which can be of practical interest on its own. Finally, we show how dynamic trivializations improve the performance of existing methods on standard tasks designed to test long-term memory within neural networks.1

上一篇:On the Fairness of Disentangled Representations

下一篇:Thresholding Bandit with Optimal Aggregate Regret

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...