资源论文Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay

Fast Convergence of Belief Propagation to Global Optima: Beyond Correlation Decay

2020-02-23 | |  58 |   30 |   0

Abstract

Belief propagation is a fundamental message-passing algorithm for probabilistic reasoning and inference in graphical models. While it is known to be exact on trees, in most applications belief propagation is run on graphs with cycles. Understanding the behavior of “loopy” belief propagation has been a major challenge for researchers in machine learning and other fields, and positive convergence results for BP are known under strong assumptions which imply the underlying graphical model exhibits decay of correlations. We show that under a natural initialization, BP converges quickly to the global optimum of the Bethe free energy for Ising models on arbitrary graphs, as long as the Ising model is ferromagnetic (i.e. neighbors prefer to be aligned). This holds even though such models can exhibit long range correlations and may have multiple suboptimal BP fixed points. We also show an analogous result for iterating the (naive) mean-field equations; perhaps surprisingly, both results are dimension-free in the sense that a constant number of iterations already provides a good estimate to the Bethe/mean-field free energy.

上一篇:The Functional Neural Process

下一篇:Cascaded Dilated Dense Network with Two-step Data Consistency for MRI Reconstruction

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...