资源论文Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees

Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees

2020-02-23 | |  45 |   34 |   0

Abstract

We propose a novel nonparametric online predictor for discrete labels conditioned on multivariate continuous features. The predictor is based on a feature space discretization induced by a full-fledged k-d tree with randomly picked directions and a recursive Bayesian distribution, which allows to automatically learn the most relevant feature scales characterizing the conditional distribution. We prove its pointwise universality, i.e., it achieves a normalized log loss performance asymptotically as good as the true conditional entropy of the labels given the features. The time complexity to process the n-th sample point is O (log n) in probability with respect to the distribution generating the data points, whereas other exact nonparametric methods require to process all past observations. Experiments on challenging datasets show the computational and statistical efficiency of our algorithm in comparison to standard and state-of-the-art methods.

上一篇:Maximum Entropy Monte-Carlo Planning

下一篇:PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...