资源算法MemN2N-pytorch

MemN2N-pytorch

2020-02-24 | |  65 |   0 |   0

MemN2N-pytorch

PyTorch implementation of End-To-End Memory Network. This code is heavily based on memn2n by domluna.

Dataset

cd bAbI
wget http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz
tar xzvf ./tasks_1-20_v1-2.tar.gz

Training

python memn2n/train.py --task=3 --cuda

Results (single-task only)

In all experiments, hyperparameters follow the settings in memn2n/train.py (e.g. lr=0.001).

And since I suspect training is really unstable, I train the model 100 times in each task with fixed hyperparameters described in memn2n/train.py, then average top-5 results.

TaskTraining Acc.Test Acc.Pass
11.001.00O
20.980.84
31.000.49
41.000.99O
51.000.94
61.000.93
70.960.95O
80.970.89
91.000.91
101.000.87
111.000.98O
121.001.00O
130.970.94
141.001.00O
151.001.00O
160.810.47
170.750.53
180.970.92
190.390.17
201.001.00O
mean0.940.84

Issues

  • It seems like model training heavily rely on weight initialization (or training is very unstable). For example, best performance of task 2 is ~90% however average performance over 100 experiments is ~40% with same model and same hyperparameters.

  • WHY?

TODO

  • Multi-task learning


上一篇:MemoryNetworks

下一篇:keras-MemN2N

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • vsepp_tensorflow

    Improving Visual-Semantic Embeddings with Hard ...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...