资源算法 Hard_nut_to_crack_Random_Erase

Hard_nut_to_crack_Random_Erase

2020-02-25 | |  50 |   0 |   0

Hard_nut_to_crack

The notebook is about improvement of classification accuracy for hard items in FashionMNIST dataset using random erase for regularization.

Previous results (see FM_SG.ipynb in my repository FashionMNIST_Image_Classification) indicate that 4 of the item classes - 0: T-shirt/top, 2: Pullover, 4: Coat, and 6: Shirt - are harder to classify; test accuracy for these items are about 89%, while other items are classified with about 98% accuracy.

In the notebook HardRandomEraseFM.ipynb we use random erase method for regularization and train 5 models for 100 epochs to investigate whether classification accuracy for these hard classes can be improved.

We find that this approach increases classification accuracy for these hard to classify items from 89% to 93.5%

Observations:

A simple CNN can achieve classification accuracy of over 93%. Combining 3 models improves accuracy around 94.4%

It takes around 16 seconds per epoch using Colaboratory GPU accelerator and Test accuracy does not improve significantly after the first 20 epochs.

Combining a few more models trained over 20 epochs may further improve classification accuracy in a resonable amount of time.

Classification accuracy is significantly lower for 4 classes: 'T-shirt/top', 'Pullover', 'Coat', and 'Shirt'

Opportunities for improvement:

Devise alternate methods for combining models

Increase the diversity of constituent models

Introduce regularization methods that prevent over-fitting beyond 20 epochs

Develop a two-phased approach: Predict using a combination of models in the first phase and use a separate model to re-classify examples predicted as 'T-shirt/top', 'Pullover', 'Coat', or 'Shirt


上一篇:Random-Erasing-on-Python3

下一篇: VoiceFilter-M2

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...